Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 242: 116025, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422670

RESUMO

This work reports the construction of an HIV-specific genosensor through the modification of carbon screen-printed electrodes (CSPE) with graphene quantum dots decorated with L-cysteine and gold nanoparticles (cys-GQDs/AuNps). Cys-GQDs were characterized by FT-IR and UV-vis spectra and electronic properties of the modified electrodes were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The modification of the electrode surface with cys-GQDs and AuNps increased the electrochemical performance of the electrode, improving the electron transfer of the anionic redox probe [Fe(CN)6]3-/4- on the electrochemical platform. When compared to the bare surface, the modified electrode showed a 1.7 times increase in effective electrode area and a 29 times decrease in charge transfer resistance. The genosensor response was performed by differential pulse voltammetry, monitoring the current response of the anionic redox probe, confirmed with real genomic RNA samples, making it possible to detect 1 fg/mL. In addition, the genosensor maintained its response for 60 days at room temperature. This new genosensor platform for early detection of HIV, based on the modification of the electrode surface with cys-GQDs and AuNps, discriminates between HIV-negative and positive samples, showing a low detection limit, as well as good specificity and stability, which are relevant properties for commercial application of biosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Infecções por HIV , Nanopartículas Metálicas , Pontos Quânticos , Humanos , Grafite/química , Pontos Quânticos/química , Ouro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Cisteína , Técnicas Biossensoriais/métodos , Eletrodos , RNA , Limite de Detecção
2.
Talanta ; 235: 122694, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517578

RESUMO

This work reports a simple strategy for Candida auris genomic DNA (gDNA) detection, a multi-resistant fungus associated with nosocomial outbreaks in healthcare settings, presenting high mortality and morbidity rates. The platform was developed using gold electrode sensitized with specific DNA capture probe and ninhydrin as a novel DNA hybridization indicator. The genosensor was able to detect C. auris in urine sample by differential pulse voltammetry and electrochemical impedance spectroscopy. The biosensor's analytical performance was evaluated by differential pulse voltammetry, detecting up to 4.5 pg µL-1 of C. auris gDNA in urine (1:10, V/V). Moreover, the genosensor was reused eight times with no loss in the current signal response. The genosensor showed selectivity and stability, maintaining 100% of its response up to 80 days of storage. In order to analyze interactions of single and double-stranded DNA with ninhydrin, SEM, AFM and molecular dynamics studies followed by docking simulations were performed. Theoretical calculations showed ninhydrin interactions more favorably with dsDNA in an A-T rich binding pocket rather than with the ssDNA. Therefore, the proposed system is a promising electrochemical detection device towards a more accurate detection of C. auris gDNA in biological samples.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Candida/genética , DNA , Ninidrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...